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Abstract - Research has been carried out to determine the physical meaning and derivation of the 

Schrodinger equation with the literature study research method. Based on the research results obtained 

through data processing in the form of information obtained from various literature sources, it can be 

concluded that the general solution of the Schrodinger equation is a wave function. In general, based 

on mathematical calculations by applying the technique of solving differential equations to the 

Schrodinger equation, it can be seen that this equation has many solutions, but not all of these solutions 

can be said to be functions that meet the wave function criteria. This wave function must be able to 

interpret the real physical criteria of a particle. 
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INTRODUCTION 

In classical physics, the laws that 

explain the behaviour of waves and particles 

are fundamentally different. Projectiles obey 

the law of particle type, such as Newtonian 

mechanics (Siregar, 2018). Waves undergo 

interference and diffraction, which 

Newtonian mechanics with respect to 

particles cannot explain. The energy carried 

by a particle is limited to a small region of 

space; A wave, on the other hand, distributes 

its energy throughout the space in front of 

the wave. In describing the behaviour of 

particles, we often want to determine their 

location, but this is not easy to do for waves 

(Feynman, 2010). 

In contrast to the obvious differences 

found in classical physics, quantum physics 

requires that particles sometimes obey the 

rules we have previously defined for waves, 

and we will use some language related to 

waves to describe particles (Trachanas, 

2018). 

Experimental evidence accumulated 

towards the end of the nineteenth century 

showed that classical mechanics failed when 

applied to particles as small as electrons. 

More specifically, careful measurement 

leads to the conclusion that particles may not 

have arbitrary energies and that the classical 

concepts of particles and waves converge 

(Jun, 2013). This topic shows how these 

observations set the stage for the 

development of quantum mechanical 

concepts and equations in the early twentieth 

century. 

System mechanics related to quantum 

systems is sometimes called wave 

mechanics or more specifically quantum 

mechanics because it deals with the 

behaviour of particles as waves (Siregar, 

2018). 

In quantum mechanics, all the 

properties of a system are expressed in terms 

of the wave function obtained by solving the 

equations proposed by Erwin Schrödinger 

(Krane, 2012). This topic focuses on the 

interpretation of the wave function, and in 

particular what it reveals about the location 

of particles. 

In 1926 Erwin Schrödinger proposed 

an equation for finding the wave function of 

any system. The time-independent 

Schrödinger equation for a particle of mass 
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m moving in one dimension with energy E in 

a system that does not change with time 

(volume remains constant) is: 

 

−
ℏ2

2𝑚

𝑑2𝜓

𝑑𝑥2 + 𝑉(𝑥)𝜓 = 𝐸𝜓         (1) 

 

The value of ℏ =
ℎ

2𝜋
  is an easy modification 

of Planck's constant which is widely used in 

quantum mechanics. V(x) is the potential 

energy of the particle at x. Since the total 

energy E is the sum of the potential energy 

and kinetic energy, the first term on the left 

must be related (in a way that will be 

explored later) with the kinetic energy of the 

particle(Griffiths & Schroeter, 2018). The 

Schrödinger equation can be considered a 

basic postulate of quantum mechanics, but 

its reasonableness can be demonstrated by 

showing that, for the case of free particles, it 

is consistent with the de Broglie relation 

(Susskind & Friedman, 2014) 

Quantum mechanics is an abstract 

concept, such as the concept of waves, 

probability density, operators, and so on. 

There are two approaches to the formulation 

of quantum mechanics, namely the wave 

mechanics developed by Schrodinger, and 

the matrix mechanics proposed by 

Heisenberg. The main difference between 

classical mechanics and quantum mechanics 

is in the statement about the dynamic 

variables that can be measured. Dynamic 

variables in classical mechanics are 

expressed by functions, while dynamic 

variables in quantum mechanics are 

represented by mathematical operators. 

Operators in quantum mechanics are applied 

to wave functions (Griffiths & Schroeter, 

2018). 

In the quantum approach, the state of a 

system and can be observed from the results 

of measurements on the system are generally 

not identical although they are always 

related. According to the quantum 

formulation, the state of a quantum system is 

described by a state function, which is 

probabilistic, whereas a certain measurable 

measurement operation is expressed in the 

corresponding mathematical operator, 

regardless of the system under consideration 

(Krane, 2012). 

A classical system, as a simple 

example of a particle at a potential, is 

described in classical mechanics by its 

position and velocity. If the magnitude of the 

potential affecting the particle is known, as 

well as the initial position and initial velocity, 

classically the position and velocity at a later 

time can be obtained by solving the particle 

equation. This means that everything about 

the movement of the particle or system can 

be known (Sudiarta, 2012). 

The development of quantum 

mechanics started from the wave nature of 

particles. The wave equations known in 

classical physics derive the wave equations 

for particles. This equation is known as the 

Schrodinger equation (Atkits & Keeler, 

2018). The simplest form of this equation is 

called the eigenvalue equation, which is an 

energy operator called the particle 

Hamiltonian which is operated on the 

particle-wave function (Atkits & Keeler, 

2018). The solution to the Schrodinger 

equation uses boundary conditions that arise 

from the form of the potential energy of the 

particle itself. The solution to the equation is 

the energy and wave function of the particle 

(Atkits & Keeler, 2018). 

Heisenberg's uncertainty principle and 

the nature of particle-wave duality indicate 

that the position and velocity of the particle 

are also waves, so the particle or system 

must be described using a wave function 

(Thornton, 2013). 

The wave function 𝜓(𝑥, 𝑡) . of a 

system consisting of one particle is usually 

given by the symbol . This wave function 

depends on the position x and time t. Keep in 
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mind that all information about the system is 

given by a wave function. This also means 

that the physical properties of the system can 

be obtained from its wave function (Sudiarta, 

2012). 

 

RESEARCH METHODS 

This study is research with literature 

study method. The literature study method is 

an activity related to the method of 

collecting library data by reading, analysing, 

and sorting literature to identify important 

attributes of the material. The significant 

difference from other methodologies is that 

it does not directly relate to the object under 

study, but indirectly accesses information 

from various literatures, which are generally 

referred to as non-contact methods. 

The research methodology of literature 

study includes unstructured qualitative 

analysis and structured quantitative analysis. 

This qualitative description rarely shows the 

relationship of research subject variables, so 

researchers tend to apply logical reasoning 

to explore logical relationships between 

objects rather than quantity relationships. In 

general, qualitative analysis is to classify the 

information contained in the literature, to 

select typical examples to rearrange and 

arrive at conclusions based on qualitative 

descriptions. Qualitative analysis of the 

literature has special value in distinguishing 

past trends and forecasting future models. 

Literary qualitative research does not focus 

on the quantity and completeness of library 

materials. It focuses on personal literature 

research and selecting small samples or case 

characteristics according to research 

interests and subject requirements. 

 

RESULT AND DISCUSSION 

Schrodinger Equation for Potential-Free 

Particles (𝑽 = 𝟎) 

Consider a particle with a mass 𝑚  that is 

contained in a one-dimensional box with the 

length of 𝐿 which is free from gravitational 

fields (𝑔) , electric fields (𝐸) , magnetic 

fields (𝐵), and friction. Thus, it can be said 

that the potential energy V of the particle is 

zero (𝑉 = 0) . Apart from this, it can be 

assumed that the particles in the box are 

constrained by not being able to leave the 

box. Such a state allows the particle to only 

move translationally freely left and right 

with momentum 𝑝𝑥 . The magnitude of the 

momentum is the same before and after 

hitting the wall of a one-dimensional box. 

Furthermore, since the particle can only 

move freely left and right, the particle only 

has a kinetic energy of 𝑇, where the value is 

equal to: 

 

𝑇 =
1

2
𝑚𝑣𝑥

2.         (2) 

 

Since 𝑚𝑣𝑥 is the momentum 𝑝𝑥, then 

equation (2) can be written as 𝑇 =
𝑝𝑥

2

2𝑚
. And 

according to classical mechanics, the total 

energy of a particle is equal to the sum of its 

kinetic energy and potential energy 𝐸 = 𝑇 +

𝑉. 

Based on the description above, it is 

known that the potential energy 𝑉  of the 

particle is zero (𝑉 = 0), so that E can be 

written even simpler and that the total energy 

of the particle in the box becomes 𝐸 = 𝑇. 

This informs us that the most 

important energy for a particle in a one-

dimensional box in the absence of a 

conservative field is the kinetic energy of the 

particle only. And by adjusting the equation 

E using the Hamiltonian quantum operator 

�̂� for the kinetic energy of the particles, the 

equation can be written as 𝐸 = �̂�. 

Now, let us consider 𝜓(𝑥) the wave 

function of the particle in the box, then E can 

be written as follows. 
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𝐸𝜓(𝑥) = �̂�𝜓(𝑥)         (3) 

 

The kinetic energy of the particle 𝑇 is equal 

to 
1

2
𝑚𝑣𝑥

2   that used in classical mechanics 

concepts so if this kinetic energy is 

substituted into equation (3), it must be 

converted into the form of a quantum 

operator. In this case, only momentum 

𝑝𝑥 and position 𝑥  have quantum operators 
ℏ

i

∂

∂x
 and 𝑥 which are actually ℏ, and 𝑖 as the 

imaginary numbers with a value of √−1 . 

Then, the equation for the kinetic energy of 

the particles can be written as follows: 

 

𝑇 = −
ℏ2

2𝑚

𝜕2

𝜕𝑥2         (4) 

 

By substituting equation (4) into equation 

(3), the following equation will be obtained: 
 

𝐸𝜓(𝑥) = −
ℏ2

2𝑚

𝜕2

𝜕𝑥2 𝜓(𝑥)        (5) 

 

The negative sign on the right-hand side of 

the equation is obtained as the result of the 

square of an imaginary number 𝑖  of −1. The 

simplification of equation (5) is: 
 

𝜕2𝜓(𝑥)

𝜕𝑥2 = −
2𝑚𝐸

ℏ2 𝜓(𝑥)       (6) 

 

This is the Schrodinger differential equation 

or also known as the Schrodinger wave 

equation. Furthermore, if you pay close 

attention, the solution for the Schrodinger 

wave equation can be found. By using the 

concept of solving differential equations, 

several solutions are obtained in the form of 

possible functions 𝜓(𝑥) , such as 𝜓(𝑥) =

𝐴𝑠𝑖𝑛(𝑘𝑥),  𝜓(𝑥) = 𝐴𝑐𝑜𝑠(𝑘𝑥) , 𝜓(𝑥) =

𝐴𝑒𝑖𝑘𝑥 , and 𝜓(𝑥) = 𝐴𝑒−𝑖𝑘𝑥 . With A as a 

constant or coefficient of each function. For 

functions 𝜓(𝑥) = 𝐴𝑠𝑖𝑛(𝑘𝑥)  and 𝜓(𝑥) =

𝐴𝑐𝑜𝑠(𝑘𝑥), this value of A is the amplitude 

of the sine and cosine wave functions. While 

the value is a phase shift or wave phase shift 

in the sine and cosine wave functions. 

If the four equations above are differentiated 

twice to get to the second derivative, then the 

four equations above will give the same 

result: 
 

𝑑2𝜓(𝑥)

𝑑𝑥2 = −𝑘2𝜓(𝑥)        (7) 

 

The value of 𝑘2  in equation (7) above is 

nothing but −
2𝑚𝐸

ℏ
. Thus, it can be written 

that the value of 𝑘 is equal to: 
 

k = √
2mE

ℏ2          (8) 

 

According to quantum theory, there 

are two conditions that must be met by a 

wave function, namely a wave function must 

be continuous and a wave function must be 

differentiable except at the limit of the 

potential energy value equal to zero or 

infinity. Thus, to determine the wave 

characteristics of the particle, it is necessary 

to set boundary conditions, by setting the 

value of the boundary conditions 𝜓(0) = 0 

and 𝜓(𝐿) = 0.  The value of L is the position 

x (L = x) of the one-dimensional box in 

which the particle is located which is used as 

the maximum limit at which the particle will 

collide and return to translational motion 

towards position 0 (𝑥 = 0). 

By applying the value of the boundary 

conditions that have been determined, it is 

known that from the four solutions of the 

Schrodinger differential equation mentioned 

above, there is only one solution that 

satisfies this boundary condition, the sine 

function 𝜓(𝑥) = 𝐴𝑠𝑖𝑛(𝑘𝑥) . Therefore, 

based on a simple mathematical calculation 

by substituting the value  x = 0 and x = L into 

the sine function, it is known that the angle 

𝑘𝐿 that satisfies is 𝜋, 2𝜋, 3𝜋, . . . , 𝑛𝜋, so that 

an equation is obtained to find the value of 
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𝑘, which is 𝑘 =
𝑛𝜋

𝐿
 . And the complete wave 

function as a solution to the Schrodinger 

differential equation for this phenomenon is 

 

𝜓(𝑥) = 𝐴𝑠𝑖𝑛 (
𝑛𝜋

𝐿
) 𝑥       (9) 

 

with n = 1, 2, 3, . . . (n ϵ ℕ). 

By applying the boundary conditions as 

described above, it is generally possible to 

obtain or prove that there is quantized energy.  
Then, by combining the two equations of k, 

we get: 

 

𝐸 =
𝑛2𝜋2ℏ2

2𝑚𝐿2    (10) 

 

By substituting the value of ℏ =
ℎ

2𝜋
, then 

equation (10) can be written as follow 
 

𝐸𝑛 =
𝑛2ℎ2

8𝑚𝐿2    (11) 

 

with n = 1, 2, 3, . .. (n ϵ ℕ). 

Equation (11) is a formulation to 

determine the amount of quantization energy 

as described by Niel Bohr. So it can be 

concluded that the Schrodinger equation for 

particles in one-dimensional space without 

being influenced by a conservative field can 

prove that particles in one-dimensional 

space have stratified or quantized energy. Or 

in other words, the particles in a one-

dimensional box cannot have the same 

arbitrary energy levels as hydrogen atoms. 

 

Schrodinger Equation of a Particle with 

Time Independent 

In this second part an assumption is 

taken that the particles in a one-dimensional 

box move in translation with the following 

wave function equation:  

 
𝜓(𝑥) = 𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑥)           (12) 

 

with 𝜓(𝑥) as a wave functions, the angular 

velocity 𝜔,  travel time 𝑡, wave vector k, and 

displacement 𝑥 . In general, the equation 

𝜓(𝑥) is a sine wave function. If the equation 

is derived once, it will be obtained: 
 
𝜕𝜓(𝑥)

𝜕𝑥
= −𝑘𝐴𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥)  (13)

  

And the second derivative of the equation is: 

 
𝜕2𝜓(𝑥)

𝜕𝑥2 = −𝑘2𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑥)  (14) 

 

From equation (14), it can be seen that 

𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑥) is 𝜓(𝑥). Thus equation (14) 

can be written as: 
 

𝜕2𝜓(𝑥)

𝜕𝑥2 + 𝑘2𝜓(𝑥) = 0   (15) 

 

By substituting the values 𝑘 =
2𝜋

𝜆
 into 

equation (15), we get: 
 

𝜕2𝜓(𝑥)

𝜕𝑥2 +
4𝜋2

𝜆2 𝜓(𝑥) = 0   (16) 

 

According to de-Broglie, 𝜆 =
ℎ

𝑚𝑣
 and by 

substituting the value of 𝜆 into equation (16), 

we get: 

 

𝜕2𝜓(𝑥)

𝜕𝑥2 +
4𝜋2𝑚2𝑣2

ℎ2 𝜓(𝑥) = 0  (17) 

 

Since the value of ℏ =
ℎ

2𝜋
, so it is true that 

1

ℎ
 

= 
2𝜋

ℏ
 and 

𝜕2𝜓(𝑥)

𝜕𝑥2
+

4𝜋2

𝜆2
𝜓(𝑥) = 0. Therefor 

1

ℎ2
 

= 
4𝜋2

ℏ2  and equation (17) can be written as 

follow: 

 

𝜕2𝜓(𝑥)

𝜕𝑥2 +
𝑚2𝑣2

ℏ2 𝜓(𝑥) = 0   (18) 

 

From the description in the previous first 

section, it can be seen that the total energy of 

a particle is 𝐸 = 𝑇 + 𝑉. So the total energy 

of the particle is  𝐸 =
1

2
𝑚𝑣2 + 𝑉.  With a 

little algebraic manipulation, this equation 

can be written as follow: 

 
2𝑚(𝐸 − 𝑉) = 𝑚2𝑣2.   (19) 
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Furthermore, by substituting equation (19) 

into equation (18), we get: 

 

𝜕2𝜓(𝑥)

𝜕𝑥2 +
2𝑚(𝐸−𝑉)

ℏ2 𝜓(𝑥) = 0  (20) 

 

Equation (20) above is Schrodinger's time-

independent equation for a particle in one-

dimensional space without neglecting the 

state of the particle which is affected by a 

conservative field. 

If an analysis is carried out to see 

how the state of the particles in three-

dimensional space with respect to a 

conservative field, then equation (20) can be 

written as: 
 

(
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2) 𝜓 +
2𝑚(𝐸−𝑉)

ℏ2 𝜓 = 0      (21) 

 

where (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2) = ∇2.  Then, 

equation (21) can be stated as: 

 

∇2𝜓(𝑥, 𝑦, 𝑧) +
2𝑚(𝐸−𝑉)

ℏ2 𝜓(𝑥, 𝑦, 𝑧) = 0 (22) 

 

Equation (22) is the Schrodinger equation 

for particles in time-free three-dimensional 

space. 

 

Schrodinger Equation of a Particle with 

Time Dependent 

The Schrodinger equation of a particle 

with time-dependent in one-dimensional 

space is one of the most important 

Schrodinger equations used in quantum 

mechanics. Basically, the time-dependent 

Schrodinger equation is used to determine 

and analyse the behaviour of a particle at the 

atomic and subatomic levels which has the 

nature of wave-particle duality as proposed 

by de-Broglie. 
In the event of light interference and 

diffraction, the wave nature of light is more 

prominent than the particle nature of light. In 

the case of the photoelectric effect and the 

Compton effect, the particle nature of light is 

more prominent than the wave nature of light. 

This particle property is expressed by the 

magnitude of momentum 𝑝, while the wave 

property is expressed by 𝜆. The relationship 

between these two quantities is expressed in 

the equation 𝜆 =
ℎ

𝑝
. 

According to the theory of classical 

mechanics, the value is mv. Thus, the above 

equation can be written as 𝜆 =
ℎ

𝑚𝑣
 and 

assuming a particle that is moving freely in 

the x with the de-Broglie wave function 

equation  𝜓(𝑥) = 𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑥) . This 

equation is then reduced to the second 

derivative, so that it is obtained: 

 
𝜕2𝜓(𝑥)

𝜕𝑥2 = −𝑘2𝜓(𝑥)   (23) 

 

with 𝜔 = 2𝜋𝜐 or 𝜔 =
2𝜋𝐸

ℎ
 (by recalling 𝐸 =

ℎ𝜐), and 𝑘 =
2𝜋𝑝𝑥

ℎ
. 

Then, by inserting both 𝜔 and 𝑘 into 

equation (23), we obtain: 

 

𝑝𝑥
2𝜓(𝑥) = −ℏ2 𝜕2𝜓(𝑥)

𝜕𝑥2    (24 

 

and 

 

𝜓(𝑥) = −
ℏ2

𝑝𝑥
2

𝜕2𝜓(𝑥)

𝜕𝑥2 .   (25) 

 

Next, if we try to differentiate the 

function 𝜓(𝑥) = 𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑥)  with 

respect to 𝑡, obviously we obtain: 

 
𝜕𝜓(𝑡)

𝜕𝑡
= 𝐴𝜔𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥)  (26) 

 

The second derivative of function 𝜓(𝑥) =

𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑥) is:  

 
𝜕2𝜓(𝑡)

𝜕𝑡2 = −𝐴𝜔2𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑥)  (27) 
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and this can be simplified as follow: 

 

𝜕2𝜓(𝑡)

𝜕𝑡2 = −𝜔2𝜓(𝑡)   (28) 

 

If we substitute the value of 𝜔 into equation 

(27), then we will obtain: 

 

𝜕2𝜓(𝑡)

𝜕𝑡2
= −

𝐸2

ℏ2
 𝜓(𝑡).   (29) 

 

Equation (29) can be stated as follow: 

 

𝐸𝟐𝜓(𝑡) = −ℏ𝟐 𝜕2𝜓(𝑡)

𝜕𝑡2
   (30) 

 

and 

 

𝜓(𝑡) =
−ℏ𝟐

𝑬𝟐

𝜕2𝜓(𝑡)

𝜕𝑡2    (31) 

 

If we consider 𝜓(𝑥) = 𝜓(𝑡), then: 

 

1

𝑝𝑥
2

𝜕2𝜓(𝑥)

𝜕𝑥2 =
1

𝐸2

𝜕2𝜓(𝑡)

𝜕𝑡2    (32) 

 

𝜕2𝜓(𝑥)

𝜕𝑥2 =
𝑝𝑥

2

𝐸2

𝜕2𝜓(𝑡)

𝜕𝑡2    (33) 

 

𝜕2𝜓(𝑥,𝑡)

𝜕𝑥2 =
2𝑚(𝐸−𝑉)

𝑬𝟐

𝜕2𝜓(𝑥,𝑡)

𝜕𝑡2   (34) 

 

where 𝜓(𝑥, 𝑡) is the wave deviation of the 

particle at the position of 𝑥  at the time 

t.  𝜓(𝑥, 𝑡)considered as a wave function of 

particles in one-dimensional space with a 

fixed energy associated with a fixed 

frequency. 
 

Solution to Schrodinger Equation of a 

Particle in One Dimensional Space 

Based on the description given 

beforehand, it can be seen that in equations 

(7) and (20) there is a wave function 𝜓(𝑥) of 

the Schrodinger equation of a particle in one-

dimensional space with time-free conditions. 

With this wave function, the probability of 

finding a particle at a position 𝑥  in the 

interval 𝑑𝑥  is 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥 , and the total 

probability of finding that particle along the 

x-axis is: 
 

∫ 𝜓∗(𝑥)𝜓(𝑥)
∞

−∞
= ∫ |𝜓(𝑥)|2𝑑𝑥 = 1

∞

−∞
    (35) 

 

In equation (35) above, |𝜓(𝑥)|2it is called 

the probability density and 𝜓∗(𝑥)  is the 

conjugation of the wave function 𝜓(𝑥). A 

wave function that satisfies equation (35) is 

called a normalized function. 
A wave function of a particle must 

have good characteristics so that the 

properties expressed by equation (35) can be 

fulfilled. The characteristics that must be 

considered are: 

(a) Not equal to zero, and is single-valued, 

meaning that the wave function 𝜓(𝑥) 

has only one value for a value x. 

(b) The function of its derivative is 

continuous at all values of x, and 

(c) Its absolute value function remains finite 

for x towards ±∞ and in the bound state 

for the value 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥 = 0   at x 

towards ±∞. 

If the three requirements above are met, then 

the wave function 𝜓(𝑥)  is considered a 

function of good behavior. 
Suppose the wave function to be normalized 

is the wave function in equation (10), 
 

𝜓(𝑥) = 𝐴𝑠𝑖𝑛 (
𝑛𝜋

𝐿
) 𝑥      (36) 

 

The normalization of the wave function must 

be fulfilled with the integral 

form  ∫ |𝜓(𝑥)|2𝑑𝑥 =
∞

−∞

𝐴2 ∫ 𝑠𝑖𝑛2 (
𝑛𝜋

𝐿
𝑥) 𝑑𝑥 =

𝐿

0
1 and the result of 

the integration of the wave function above as 

the result of normalization of the wave 

function is nothing but 𝐴 = √
2

𝐿
. Here are the 

following steps for the integration process: 
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𝐴2 ∫ 𝑠𝑖𝑛2 (
𝑛𝜋

𝐿
𝑥) 𝑑𝑥 =

𝐿

0
1       (37) 

 

By taking the value example of 𝑛 = 1 and 

applying the trigonometric identity 𝑠𝑖𝑛2𝜃 =
1−𝑐𝑜𝑠2𝜃

2
, then the integration step above 

becomes: 

 

∫ 𝑠𝑖𝑛2 (
𝜋

𝐿
𝑥) 𝑑𝑥 =

𝐿

0

1

𝐴2
   

1

2
∫ (1 − 𝑐𝑜𝑠 (

𝜋

𝐿
𝑥)) 𝑑𝑥 =

𝐿

0

1

𝐴2
 

 

[𝑥 −  𝑠𝑖𝑛 (
𝜋

𝐿
𝑥)]

0

𝐿

=
2

𝐴2
   

 

[𝐿 −  𝑠𝑖𝑛(𝜋)]  −  [0 −  𝑠𝑖𝑛 (0)] =
2

𝐴2
 

 

 𝐿 =
2

𝐴2
  

 

and the value of A is: 

 

𝐴 = √
2

𝐿
   (38) 

 

With the obtained value of A, then the 

complete normalized function is: 

 

𝜓(𝑥) = √
2

𝐿
𝑠𝑖𝑛 (

𝑛𝜋

𝐿
) 𝑥   (39) 

 

Based on the results of the integration above, 

it can be seen that for the region 𝑥 ≤ 0 and 

𝑥 ≥ 0, the value of 𝜓 = 0. 

And by taking the example that the 

length of the one-dimensional space in 

which the particles are located is equal to 

𝐿 = 1 𝑚 , then the normalized equation of 

the wave function becomes 𝜓(𝑥) =

√2𝑠𝑖𝑛(𝑛𝜋)𝑥 .This condition can be 

visualized by using the help of the 

Mathematica Wolfram the state of the wave 

function for different values of n can be 

described as below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The wave function of a particle in a 

one-dimensional box with different values of n. 

 

Physical Meaning of Schrodinger 

Equation of a Particle 

The wave function 𝜓(𝑥)  basically 

describes the quantum characteristics or 

behaviour of a particle, such as an electron 

particle trapped in a one-dimensional space. 

In addition, the wave function can describe 

the state of an electron in an atom of a 
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particular element. For example, why an 

electron that revolves around the nucleus of 

an atom does not fall into the nucleus of an 

atom. It can be determined by assuming that 

electrons are not only particles but also 

waves so it requires a wave function to 

describe the behaviour of electrons. 

According to Schrodinger, the wave 

function is nothing but charge density by 

assuming that electrons move in space and 

their charge spreads to every point in the 

space. However, the physical meaning of the 

wave function interpreted by Schrodinger 

was not entirely correct until finally, Max 

Born interpreted the wave function by 

squaring the wave function so that it 

becomes |𝜓(𝑥)|2. 

In his interpretation, Max Born 

considers that the wave function 𝜓(𝑥) is a 

way to determine the probability of the 

position of an electron at a point in space 

|𝜓(𝑥)|2  is nothing but probability density is 

the probability of finding the position of an 

electron in one-dimensional space. 

In Figure 2 below, it can be seen that 

when the position of the particle is at 𝑥 = 1  

(for 𝑛 = 1 ), the probability density value 

obtained based on the graph is 0. This means 

that at point 𝑥 = 1  , the probability of 

finding electrons at that point is very small. 

Likewise at point with 𝑥 = 0.5, 𝑥 = 1.0,

𝑥 = 1.5, and 𝑥 = 2.0 with 𝑛 = 2. While at 

the point where the amplitude of the wave 

function is very large, the possibility of 

finding electrons or particles at that point is 

very large because the probability density 

value is very large. Thus, it can be concluded 

clearly that the wave function does not tell 

the position of electrons or particles in 

space. , but only shows the probability of the 

position of the electron or particle. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Probability distribution function 

 

CONCLUSION 

Based on the description and elaboration of 

the derivation of the Schrodinger equation 

for particles in the one-dimensional space 

above, it can be concluded that the general 

solution of the Schrodinger equation is a 

wave function. In general, based on 

mathematical calculations by applying the 

technique of solving differential equations to 

the Schrodinger equation, it can be seen that 

this equation has many solutions, but not all 

of these solutions can be said to be functions 

that meet the wave function criteria. This 

wave function must be able to interpret the 

real physical criteria of a particle. One of the 

criteria that satisfy the solution of the 

Schrodinger equation is none other than that 

the function can be normalized. In fact, by 

normalizing the function which is the 

solution to the obtained Schrodinger 

equation, it will obtain a probability value 

equal to one. If this Max Born’s statistical 

interpretation can be applied to a function 

that is a solution to the Schrodinger equation 

and is successfully normalized, then the 
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function can be used to represent particles 

realistically. Thus, other functions that 

cannot be normalized are ordinary 

mathematical functions that have no 

physical meaning. 
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